Measurements of forest cover and change are vital to understanding the global carbon cycle and the contribution of forests to carbon sequestration. Many nations are engaged in international agreements, such as the Reducing Emissions from Deforestation and Degradation (REDD+) initiative, which includes tracking annual deforestation rates and developing early warning systems of forest loss. Remote sensing data are integral to data collection for these metrics, however, the use of optical remote sensing for monitoring forest health can be challenging in tropical, cloud-prone regions.
Radar remote sensing overcomes these challenges because of its ability to see the surface through clouds or regardless of day or night conditions. In addition, the radar signal can penetrate through the vegetation canopy and provide information relevant to structure and density.
This advanced webinar series will introduce participants to 1.) SAR time series analysis of forest change using Google Earth Engine (GEE), 2.) land cover classification with radar and optical data with GEE, 3.) mapping mangroves with SAR, and 4.) forest stand height estimation with SAR. Each training will include a theoretical portion describing the use of SAR for landcover mapping as related to the focus of the session followed by a demonstration that will show participants how to access, download, and analyze SAR data for forest mapping and monitoring. These demonstrations will use freely-available, open-source data and software.
Relevant UN Sustainable Development Goals:
Target 15.1: By 2020, ensure the conservation, restoration and sustainable use of terrestrial and inland freshwater ecosystems and their services, in particular forests, wetlands, mountains and drylands, in line with obligations under international agreements
Target 15.2: By 2020, promote the implementation of sustainable management of all types of forests, halt deforestation, restore degraded forests and substantially increase afforestation and reforestation globally